Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Artigo em Chinês | MEDLINE | ID: mdl-38311946

RESUMO

Objective: To analyze and summarize the trends and hot spots in the field of neurological damage caused by electric welding operations, and to provide ideas for new researches by searching the domestic and international literature. Methods: In December 2022, using Web of Science Citation Index (Web of Science), China Journal Full-Text Database (CNKI) and Wanfang Database as search databases, literature search was conducted on the Chinese and English search terms related to eletrical welding operations and neurological damage. The bibliometric analysis software VOSviewer 1.6.18 and CiteSpace 6.1.6 were used to visualize the publication year, publication quantity, country, research institution and key words of the literature. Results: A total of 309 articles (112 in Chinese and 197 in English) were included in this study. The first domestic and international papers were published in 1976 and 1994 respectively, and the number of papers reached the peak in 2006 and 2018, and then showed a downward trend to varying degrees. In China, Shandong First Medical University (including Shandong Institute of Occupational Health and Occupational Disease Prevention and Shandong Academy of Medical Sciences) and Wuhan University of Science and Technology had the largest number of publications. The 309 articles were from 52 Chinese journals and 86 English journals. The co-occurrence analysis of key words showed that the domestic research mainly focused on eletrical welding operation, welding workers, neurobehavioral function and manganese, and the nervous system damage caused by manganese in welding smoke was the field of international attention. Long term exposure, risk, and performance were key buzzwords in the field. Conclusion: The research focus in the field of nervous system damage caused by electric welding operation has an obvious trend of time evolution, gradually transiting from clinical manifestations to its toxic mechanism and early biomarkers.


Assuntos
Manganês , Doenças do Sistema Nervoso , Doenças Profissionais , Fumaça , Soldagem , Humanos , Povo Asiático , Bibliometria , China , Manganês/análise , Manganês/toxicidade , Soldagem/métodos , Doenças do Sistema Nervoso/etiologia , Fumaça/efeitos adversos , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise
2.
Biol Trace Elem Res ; 202(3): 811-823, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37347403

RESUMO

Welding fumes have an important role to create the adverse health effects. So, the aim of this study was to use of multiple occupational health risk assessment models for metal fumes in welding process. This cross-sectional study was conducted among welding workers. Sampling of heavy metals such as Sn, Zn, Al, Fe, Cd, Pb, Cu, Mn, Ni, Cr, and As was provided based on the National Institute for Occupational Safety and Health (NIOSH) method 7300 and analyzed by inductively coupled plasma mass spectroscopy (ICP-MS). Risk assessment was managed by four methods including Malaysia's method, Control of Substances Hazardous to Health Essentials (COSHH model), Chinese OHRA standard (GBZ/T 298-2017), and EPA method. Also, Monte Carlo simulation was used to examine the uncertainties by using the Crystal Ball tool. To compare the models, the risk levels of each model were converted into the risk ratio and the SPSS 22.0 software was used to the statistical analysis. The consistency of the two occupational health risk assessment models was examined by Cohen's Kappa. Risk ration was the highest level for Cr (VI) fumes in all models. Also, carcinogenic risk was unacceptable for all examined fumes. Moreover, non-carcinogenic risk was the highest (HI > 1) for As fumes. Mont Carlo simulations suggested that exposure time (ET) had a significant effect on the risk. Also, there was a good consistency between Malaysia method/GBZ/T 298-2017 and COSHH model/GBZ/T 298-2017. Therefore, it is recommended that the engineering and administrative controls should be provided to reduce exposure.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Humanos , Soldagem/métodos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/análise , Estudos Transversais , Medição de Risco
3.
Environ Sci Pollut Res Int ; 30(42): 95550-95565, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37552445

RESUMO

The present study discusses the effect of the addition of nano-sized arc stabilizing materials on fume emissions and its solubility characteristics. Micro and nano-sized sodium/potassium titanates were added to the SMAW electrode flux as a substitute for the conventional sodium and potassium silicate compounds. The total and soluble metal concentration of fumes from the newly developed electrodes were estimated and compared with that of commercially available electrodes. The estimation of fume formation rate and breathing zone concentration of fumes followed the ISO 15011-1 and ISO 10882-1 standard. An average 50% reduction in the soluble fraction of fumes was observed from the electrodes containing micro-sized potassium-titanate compounds, and the reduction was further improved by 60% when nano-sodium titanate was added to the flux. Whereas, the reduction in soluble metal concentration for potassium titanate coated electrodes were 45% and 55%, in that order, for their micro and nano-structured forms. The soluble fraction of hexavalent chromium from the electrodes containing 100% nano sodium/potassium titanates was reduced up to 50% in each impactor stage. The inclusion of nano-sized sodium titanate in the flux resulted in a reduction in fume formation rate up to 55% and breathing zone concentration of fumes by 58% compared to the conventional sodium silicate coated electrodes. The electrode assaying 100% nano-potassium titanate showed a reduction of 59% in fume formation rate and 61% in breathing zone concentration compared to that of conventional potassium silicate-coated electrodes.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Poluentes Ocupacionais do Ar/análise , Sódio , Cromo/análise , Metais/análise , Gases/análise , Potássio , Eletrodos , Soldagem/métodos , Exposição Ocupacional/análise
4.
Environ Sci Pollut Res Int ; 30(35): 83728-83734, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37349491

RESUMO

The international agency for cancer research (IARC) has classified welding fumes as definitive carcinogens. The aim of the present study was to assess health risk due to exposure to welding fumes in different welding types. In this study, exposure to fumes of iron (Fe), chromium (Cr), and nickel (Ni) in the breathing zone air of 31 welder engaged in arc, argon and CO2 welding was assessed. Carcinogenic and non-carcinogenic risk assessments due to exposure to fumes were performed using the method proposed by the Environmental Protection Agency (EPA) by Monte Carlo simulation. The results showed that in the CO2 welding, concentration of Ni, Cr, and Fe was lower than the 8-h Time-Weighted Average Threshold Limit Value (TWA-TLV), recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). In argon welding, Cr and Fe concentrations were higher than the TWA-TLV. In arc welding, concentrations of Ni and Fe were more than the TWA-TLV. In addition, the risk of non-carcinogenicity due to exposure to Ni and Fe in all three types of welding was more than standard level (HQ>1). The results indicated that the welders are at health risk due to exposure to metal fumes. Preventive exposure control measures such as local ventilation need to be implemented in welding workplaces.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Humanos , Poluentes Ocupacionais do Ar/análise , Carcinógenos , Soldagem/métodos , Argônio , Dióxido de Carbono , Cromo/análise , Gases , Carcinogênese , Níquel/análise , Exposição Ocupacional/análise
5.
J Occup Health ; 65(1): e12399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37130744

RESUMO

OBJECTIVES: The mask fit test confirms whether the wearing condition of the wearer's face and the facepiece of the respirators are used appropriately. This study aimed to examine whether the results of the mask fit test affect the association between the concentration of metals related to welding fumes in biological samples and the results of time-weighted average (TWA) personal exposures. METHODS: A total of 94 male welders were recruited. Blood and urine samples were obtained from all participants to measure the metal exposure levels. Using personal exposure measurements, the 8-h TWA (8 h-TWA) of respirable dust, TWA of respirable Mn, and 8-h TWA of respirable Mn were calculated. The mask fit test was performed using the quantitative method specified in the Japanese Industrial Standard T8150:2021. RESULTS: Fifty-four participants (57%) passed the mask fit test. Only in the Fail group of the mask fit test, it was observed that blood Mn concentrations be positively associated with the results of TWA personal exposure after adjusting for multivariate factors (8-h TWA of respirable dust; coefficient, 0.066; standard error (SE), 0.028; P = 0.018, TWA of respirable Mn: coefficient, 0.048; SE, 0.020; P = 0.019, 8 h-TWA of respirable Mn: coefficient, 0.041; SE, 0.020; P = 0.041). CONCLUSIONS: The results clarify that welders with high concentrations of welding fumes in their breathing air zone are exposed to dust and Mn if there is leaking air owing to the lack of fitness between respirators and the wearer's face when using human samples in Japan.


Assuntos
Poluentes Ocupacionais do Ar , Ferreiros , Exposição Ocupacional , Dispositivos de Proteção Respiratória , Soldagem , Humanos , Masculino , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/sangue , Poluentes Ocupacionais do Ar/urina , Poeira/análise , População do Leste Asiático , Exposição por Inalação/análise , Japão , Manganês/sangue , Manganês/urina , Metais/análise , Metais/sangue , Metais/urina , Exposição Ocupacional/análise , Soldagem/métodos
6.
Ann Work Expo Health ; 67(6): 675-693, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37191647

RESUMO

The fumes created from welding activities present a unique occupational hazard. Due to the complex processes which govern fume formation, the characterization of welding fumes is difficult. Emission factors (EFs) are one method to characterize fume formation from different processes and scenarios. This paper reviews the development of EFs and similar metrics both historic research which contributed to the US EPAs AP-42 summary of welding emission factors released in 1995, and more recent research initiatives. Through a critical analysis of what research has been done in this area and the strength of the emission factors developed, this paper proposes a set of recommendations for future research. Research on emission factors for gas metal arc welding (GMAW) is the most complete amongst the different types of electric arc welding. Despite it being generally known that flux core arc welding (FCAW) creates significant fume emissions compared to some of the other processes few studies have looked at FCAW since the AP-42. Shielded metal arc welding is also under-researched particularly in terms of metal-specific emission factors. The influence of different welding activity parameters such as welding location, speed or current is well defined for GMAW but requires more attention for other welding processes. Further effort towards compiling and comparing available emission factor data of quality, evaluating the available data statistically and organizing this data in a practically useful way is required. The availability of reliable emission factors will allow the development or improvement of exposure modelling tools that would be very useful for exposure assessment when monitoring is not practical.s.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Humanos , Poluentes Ocupacionais do Ar/análise , Exposição Ocupacional/análise , Soldagem/métodos , Metais/análise , Gases
7.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679692

RESUMO

Wear of the secondary of the welding gun, caused by mechanical fatigue or due to a bad parameterization of the welding points, causes an increase in quality problems such as non-existent welds or a reduced weld nugget size. In addition to quality problems, this defect causes production stoppages that affect the final cost of the manufactured part. Different studies have focused on evaluating the importance of different welding parameters, such as current, in the final quality of the welding nugget. However, few studies have focused on preventing weld command parameters from degrading or changing. This investigation seeks to determine the wear of the secondary circuit to avoid variability in the current supplied to the welding point caused by this defect and the increase in circuit resistance, especially in industrial environments. In this work, a virtual sensor is developed to estimate the resistance of the welding arm based on previous research, which has shown the possibility of detecting secondary wear by analysing the duty cycle of the power circuit. From the data of the virtual sensor, an anomaly detection method based on the Mahalanobis distance is developed. Finally, an integral system for detecting secondary wear of welding guns in real production lines is presented. This system establishes performance thresholds based on the analysis of the Mahalanobis distance distribution, allowing monitoring of the secondary circuit wear condition after each welding cycle. The results obtained show how the system can detect incipient wear in welding guns, regardless of which part of the secondary the wear occurs, improving decision-making and reducing quality problems.


Assuntos
Armas de Fogo , Soldagem , Soldagem/métodos
8.
Phys Med ; 106: 102520, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610178

RESUMO

PURPOSE: Photobiological hazards caused by artificial optical radiation are assessed for the most commonly used arc welding technique, the SMAW (Shielded Metal Arc Welding), which operates with a hand-held system and is widely used both at occupational and domestic environments, expanding our previous investigation of a robotic arc welding process. METHODS: The complex exposure limits of the emitted blue and visible light, ultraviolet and infrared, are assessed through the European Directive 2006/25/EC, using three dedicated sensors set to measure irradiance from various typical welding procedures in the controlled environment (currents, electrodes, etc.) of a welding laboratory. In this sense, field measurements are employed, applying existing policies. Occupational limits are also applicable to the domestic welding. RESULTS: Apart from sub-minute overexposures, which were detected in every spectral band, overexposures in the order of one second were also observed at very close distances, which are common at complex working environments. Investigation of the initial welding procedure, which is often performed without the use of Personal Protective Equipment, revealed exposure of the order of the corresponding limit. CONCLUSIONS: Simulation of a 'bad' welding procedure revealed increased exposure, indicating the importance of training in the occupational environment. Concern for the exposure of near-by workers (working a few meters away from the welding point) is also crucial. Future work needs to incorporate more welding techniques and measurements from original workplaces, in order to set the basis for an integrated risk assessment and provide valuable information concerning occupational diseases.


Assuntos
Exposição Ocupacional , Soldagem , Humanos , Exposição Ocupacional/análise , Raios Ultravioleta , Soldagem/métodos , Metais , Luz
9.
Biol Trace Elem Res ; 201(3): 1090-1100, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35508890

RESUMO

There have been numerous reports of welder's worker exposure to metal fumes. Carcinogenic and non-carcinogenic (neurological, dermal, and etc.) effects are the adverse outcomes of exposure to welding fumes. In this review study, data were collected from previous studies conducted in Iran from 1900 to 2020. The risk of carcinogenicity and non-carcinogenicity due to exposure to welding metal fumes was assessed using the United States Environmental Protection Agency (USEPA) method based on the Monte Carlo simulation (MCS). Results showed mean of metal fume concentration in gas welding was in the range of 1.8248 to 1060.6 (µg/m3) and in arc welding was 54.935 to 4882.72 (µg/m3). The mean concentration of fumes in gas welding is below the recommended American Conference of Governmental Industrial Hygienists (ACGIH) standard exposure limit except for manganese, and in the arc welding, all metal fume concentrations are below the standard exposure limit except for manganese and aluminum. The results showed that the risk of carcinogenicity due to exposure to nickel, manganese in both gas and arc welding, and cadmium in gas welding was higher than standard level (hazard quotient (HQ) more than 1). Cancer risk due to exposure to nickel in both gas and arc welding was probable (1 × 10-6 < cancer risk (CR) < 1 × 10-4). Health risk assessment showed that welders are exposed to health risks. Preventive measures should be applied in welding workplaces to reduce the concentrations of metal fumes.


Assuntos
Poluentes Ocupacionais do Ar , Neoplasias , Exposição Ocupacional , Soldagem , Humanos , Irã (Geográfico) , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/análise , Ferreiros , Níquel/análise , Manganês/análise , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Medição de Risco , Soldagem/métodos
10.
Environ Sci Pollut Res Int ; 30(4): 10037-10051, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36066794

RESUMO

Welding fume exposure at work is recognized as a known concern for public health. This study aims to assess the welding fumes produced during welding using two different extraction patterns and to compare their influences. A thorough assessment of domestic arc welders in the erode district of India was done to assess their exposure to welding gases. The survey results chose the gas metal arc welding (GMAW) process for future investigation. The stainless-steel grade SS 316 L was used in this study. To weld 3-mm, 5-mm, and 6-mm-thick stainless-steel specimens, ER316 L filler wire and four shielding gas compositions were used. Two distinct, cost-effective welding hoods with a square duct section and a conical duct section were constructed to examine welding gases. The produced fume was collected on a 240 mm glass fibre filter and re-weighted during welding. Gas flow rates of 5, 10, and 15 LPM were investigated, with current intensities of 150A, 200A, and 275A. A novel attempt has been made to compare fume formation rates (FFR) obtained using two extraction patterns. According to this investigation, weld fume hoods with conical duct sections extract more welding gases than square duct sections. The extraction rate using two extraction patterns was compared. Furthermore, the addition of CO2 to any shielding gas mixture results in a higher fume formation rate. The experimental FFR values were quite close to the American Welding Society (AWS) specifications. This finding also revealed that welders' socio-demographic characteristics, such as age, marital status, level of education, and work experience, influenced their awareness of occupational hazards and personal protection equipment (PPEs). As a result, there should be a strong emphasis on hazard identification education and strict enforcement of proper PPEs use among small-scale welders in and around the erode district to protect welders from a variety of hazards.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Poluentes Ocupacionais do Ar/análise , Soldagem/métodos , Exposição Ocupacional/análise , Gases/análise , Aço Inoxidável , Local de Trabalho
11.
Environ Sci Pollut Res Int ; 30(7): 18764-18776, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36219285

RESUMO

Welding is widely used to make assembly of structural components and it will trigger serious environmental pollution, especially waste gas, i.e., carbon dioxide (CO2), ozone (O3), nitrogen oxide (NOx), and particulate matter (PM). It is hard to accurately measure gas pollutants because of their fluidity and diffusivity. However, the pollutants could be evaluated by exploring its generation procedure, i.e., how these pollutants are produced and how to quantify these pollutants. In this paper, an arc profile-based approach to evaluate the emissions of gas pollutants in welding was proposed. The emission of gas pollutants in welding can be calculated according to the chemical reaction and corresponding reaction condition, i.e., the intensity of discharge that determines the coverage volume of the welding arc. To obtain the coverage volume, the welding arc was observed using a high-speed camera and the arc edge was extracted and reconstructed by a binarization processing based method. A welding experiment was performed for recording the arc shape and measuring the emission of gas pollutants. Results show that the measured concentrations of NOx and O3 are 70% and 79% of the calculated emissions of gas pollutants, respectively. It demonstrates the proposed method is credible and feasible, which can help quantitatively analyze the emission of gas pollutants. Meanwhile, the influence of welding time, welding current, and arc length on the emission of gas pollutants was investigated for lowering emission of gas pollution in welding, in order to support the development of sustainable manufacturing processes.


Assuntos
Poluentes Ocupacionais do Ar , Poluentes Ambientais , Exposição Ocupacional , Soldagem , Poluentes Ocupacionais do Ar/análise , Soldagem/métodos , Exposição Ocupacional/análise , Material Particulado/análise , Óxido Nítrico
12.
Toxicol Ind Health ; 39(1): 36-48, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36464906

RESUMO

Computational fluid dynamics (CFD) is an indispensable simulation tool for predicting the emission of pollutants in the work environment. Welding is one of the most common industrial processes that might expose the operators and surrounding workers to certain hazardous gaseous metal fumes. In the present study, we used computational fluid dynamics (CFD) methodology for simulating the emission of iron fumes from the shielded metal arc welding (SMAW) procedure. A galvanized steel chamber was fabricated to measure the pollutant concentration and identify the size of the fume created by the SMAW. Then, the emission of welding aerosol was simulated using a method of computational fluid-particle dynamics with the ANSYS 2020 R1 software. The highest amount of welding fumes concentration was related to iron fumes (i.e., 3045 µg/m3 with a diameter of 0.25 µm). The results of the current study indicated that the local exhaust and general ventilation system can prevent the spreading of welding fumes to the welder's breathing zone and the surrounding environment. CFD was also found to be an efficient method for predicting the emission of the iron fumes created by SMAW as well as for selecting an appropriate ventilation system. However, further studies that take the modeling of welding-generated emission of additional metal particles and gases into account will need to be undertaken.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Humanos , Poluentes Ocupacionais do Ar/análise , Exposição Ocupacional/análise , Soldagem/métodos , Hidrodinâmica , Metais/análise , Gases , Ferro
13.
Environ Res ; 216(Pt 3): 114736, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343713

RESUMO

In welding, there is a potential risk due to metal-oxide nanoparticles (MONPs) exposure of workers. To investigate this possibility, the diameter and number particles concentration of MONPs were evaluated in different biological matrices and in personal air samples collected from 18 stainless-steel welders and 15 unexposed administrative employees engaged in two Italian mechanical engineering Companies. Exhaled breath condensate (EBC) and urine were sampled at pre-shift on 1st day and post-shift on 5th day of the workweek, while plasma and inhalable particulate matter (IPM) at post-shift on 5th day and analysed using the Single Particle Mass Spectrometry (SP-ICP-MS) technique to assess possible exposure to Cr2O3, Mn3O4 and NiO nanoparticles (NPs) in welders. The NPs in IPM at both Companies presented a multi-oxide composition consisting of Cr2O3 (median, 871,574 particles/m3; 70 nm), Mn3O4 (median, 713,481 particles/m3; 92 nm) and NiO (median, 369,324 particles/m3; 55 nm). The EBC of welders at both Companies showed Cr2O3 NPs median concentration significantly higher at post-shift (64,645 particles/mL; 55 nm) than at pre-shift (15,836 particles/mL; 58 nm). Significantly lower Cr2O3 NPs median concentration and size (7762 particles/mL; 44 nm) were observed in plasma compared to EBC of welders. At one Company, NiO NPs median concentration in EBC (22,000 particles/mL; 65 nm) and plasma (8248 particles/mL; 37 nm) were detected only at post-shift. No particles of Cr2O3, Mn3O4 and NiO were detected in urine of welders at both Companies. The combined analyses of biological matrices and air samples were a valid approach to investigate both internal and external exposure of welding workers to MONPs. Overall, results may inform suitable risk assessment and management procedures in welding operations.


Assuntos
Poluentes Ocupacionais do Ar , Nanopartículas , Exposição Ocupacional , Soldagem , Humanos , Aço Inoxidável/análise , Ferreiros , Monitoramento Biológico , Exposição Ocupacional/análise , Óxidos/análise , Soldagem/métodos , Material Particulado/análise , Compostos Orgânicos/análise , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental
14.
Sensors (Basel) ; 22(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366111

RESUMO

Electrode misalignment, produced by mechanical fatigue or bad adjustments of the welding gun, leads to an increase in expulsions, deformations and quality problems of the welding joints. Different studies have focused on evaluations of the influence of a misalignment of the electrodes and the final quality of the weld nugget. However, few studies have focused on determining a misalignment of the electrodes to avoid problems caused by this defect, especially in industrial environments. In this paper, a method for performing the condition monitoring of electrode alignment degradation was developed following previous research, which has shown the relationship between the misalignment of short-circuited electrodes and the magnetic field generated by them. This method was carried out by means of a device capable of measuring the magnetic field. Finally, an integral system for the detection of misalignments in real production lines is presented. This system set behavior thresholds based on the experimentation, allowing the condition monitoring of the alignment after each welding cycle.


Assuntos
Soldagem , Soldagem/métodos , Eletrodos
15.
Sensors (Basel) ; 22(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36366244

RESUMO

Real-time tracking welding with the assistance of structured light vision enhances the intelligence of robotic welding, which significantly shortens teaching time and guarantees accuracy for user-customized product welding. However, the robustness of most image processing algorithms is deficient during welding practice, and the security regime for tracking welding is not considered in most trajectory recognition and control algorithms. For these two problems, an adaptive feature extraction algorithm was proposed, which can accurately extract the seam center from the continuous, discontinuous or fluctuating laser stripes identified and located by the CNN model, while the prior model can quickly remove a large amount of noise and interference except the stripes, greatly improving the extraction accuracy and processing speed of the algorithm. Additionally, the embedded Pauta criterion was used to segmentally process the center point data stream and to cyclically eliminate outliers and further ensure the accuracy of the welding reference point. Experimental results showed that under the guarantee of the above-mentioned seam center point extraction and correction algorithms, the tracking average error was 0.1 mm, and even if abnormal trajectory points existed, they did not cause welding torch shaking, system interruption or other accidents.


Assuntos
Soldagem , Soldagem/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Lasers , Tecnologia
16.
Arch Toxicol ; 96(12): 3201-3217, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35984461

RESUMO

Thermal spray coating is an industrial process in which molten metal is sprayed at high velocity onto a surface as a protective coating. An automated electric arc wire thermal spray coating aerosol generator and inhalation exposure system was developed to simulate an occupational exposure and, using this system, male Sprague-Dawley rats were exposed to stainless steel PMET720 aerosols at 25 mg/m3 × 4 h/day × 9 day. Lung injury, inflammation, and cytokine alteration were determined. Resolution was assessed by evaluating these parameters at 1, 7, 14 and 28 d after exposure. The aerosols generated were also collected and characterized. Macrophages were exposed in vitro over a wide dose range (0-200 µg/ml) to determine cytotoxicity and to screen for known mechanisms of toxicity. Welding fumes were used as comparative particulate controls. In vivo lung damage, inflammation and alteration in cytokines were observed 1 day post exposure and this response resolved by day 7. Alveolar macrophages retained the particulates even after 28 day post-exposure. In line with the pulmonary toxicity findings, in vitro cytotoxicity and membrane damage in macrophages were observed only at the higher doses. Electron paramagnetic resonance showed in an acellular environment the particulate generated free radicals and a dose-dependent increase in intracellular oxidative stress and NF-kB/AP-1 activity was observed. PMET720 particles were internalized via clathrin and caveolar mediated endocytosis as well as actin-dependent pinocytosis/phagocytosis. The results suggest that compared to stainless steel welding fumes, the PMET 720 aerosols were not as overtly toxic, and the animals recovered from the acute pulmonary injury by 7 days.


Assuntos
Poluentes Ocupacionais do Ar , Soldagem , Ratos , Animais , Masculino , Aço Inoxidável/toxicidade , Poluentes Ocupacionais do Ar/toxicidade , NF-kappa B , Actinas , Fator de Transcrição AP-1 , Ratos Sprague-Dawley , Aerossóis e Gotículas Respiratórios , Soldagem/métodos , Exposição por Inalação/efeitos adversos , Pulmão , Poeira , Inflamação/patologia , Citocinas , Clatrina/farmacologia
17.
Inhal Toxicol ; 34(9-10): 275-286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35724235

RESUMO

Objective: Stainless steel welding creates fumes rich in carcinogenic metals such as chromium (Cr). Welding consumables devoid of Cr are being produced in an attempt to limit worker exposures to toxic and carcinogenic metals. The study objective was to characterize a copper-nickel (Cu-Ni) fume generated using gas metal arc welding (GMAW) and determine the pulmonary deposition and toxicity of the fume in mice exposed by inhalation. Materials and Methods: Male A/J mice (6-8 weeks of age) were exposed to air or Cu-Ni welding fumes for 2 (low deposition) or 4 (high deposition) hours/day for 10 days. Mice were sacrificed, and bronchoalveolar lavage (BAL), macrophage function, and histopathological analyses were performed at different timepoints post-exposure to evaluate resolution. Results and Discussion: Characterization of the fume indicated that most of the particles were between 0.1 and 1 µm in diameter, with a mass median aerodynamic diameter of 0.43 µm. Metal content of the fume was Cu (∼76%) and Ni (∼12%). Post-exposure, BAL macrophages had a reduced ability to phagocytose E. coli, and lung cytotoxicity was evident and significant (>12%-19% fold change). Loss of body weight was also significant at the early timepoints. Lung inflammation, the predominant finding identified by histopathology, was observed as a subacute response early that progressively resolved by 28 days with only macrophage aggregates remaining late (84 days). Conclusions: Overall, there was high acute lung toxicity with a resolution of the response in mice which suggests that the Cu-Ni fume may not be ideal for reducing toxic and inflammatory lung effects.


Assuntos
Poluentes Ocupacionais do Ar , Soldagem , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Animais , Cromo , Cobre/toxicidade , Escherichia coli , Gases/análise , Gases/farmacologia , Pulmão , Masculino , Metais , Camundongos , Níquel/toxicidade , Soldagem/métodos
18.
Artigo em Chinês | MEDLINE | ID: mdl-35545597

RESUMO

Objective: To explore the occupational hazards caused by three kinds of welding operations, and to provide data support for individual protection. Methods: In October 2020, the welding fumes, metal elements and welding arc generated by three welding operations of argon gas shielded welding (JS80 welding wire) , manual welding (ZS60A welding rod) and carbon dioxide shielded welding (907A flux cored wire) were collected and measured in the welding laboratory. The samples were analyze and compare in the laboratory, and the differences of the occupational hazard factors of the three welding operations were judged. Results: The concentration of welding fume produced by carbon dioxide shielded welding, manual welding (ZS60A electrode) , and argon gas shielded welding (JS80 welding wires) were 6.80 mg/m(3), 6.17 mg/m(3), and 3.13 mg/m(3), respectively. The effective irradiance of the welding arc outside the welding mask from high to low is manual welding (ZS60A electrode) , carbon dioxide shielded welding (907A flux-cored welding wire) , and argon shielded welding (JS80 welding wire) , respectively 1 010.7, 740.9, 589.5 µW/cm(2). The long-wave ultraviolet UVA intensity generated by argon shielded welding (JS80 welding wire) is the largest, which is 1 500 µW/cm(2). The content of Mn in the three welding operations is the highest, and JS80 welding wire has the highest Mn content of 128493.2 mg/kg. 907A flux cored wire has the highest Ti content, which is 24355.5mg/kg. The electrode ZS60A has the highest Cu content, which is 24422.12 mg/kg. Conclusion: The intensity of occupational hazards is different in the three kinds of welding operations, so the methods of personal protective equipment, field exposure assessment and health monitoring should be more targeted.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Poluentes Ocupacionais do Ar/análise , Argônio/análise , Dióxido de Carbono/análise , Gases/análise , Exposição Ocupacional/análise , Soldagem/métodos
19.
Sensors (Basel) ; 22(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408170

RESUMO

To solve the current problem of poor weld formation due to groove width variation in swing arc narrow gap welding, an infrared passive visual sensing detection approach was developed in this work to measure groove width under intense welding interferences. This approach, called global pattern recognition, includes self-adaptive positioning of the ROI window, equal division thresholding and in situ dynamic clustering algorithms. Accordingly, the self-adaptive positioning method filters several of the nearest values of the arc's highest point of the vertical coordinate and groove's same-side edge position to determine the origin coordinates of the ROI window; the equal division thresholding algorithm then divides and processes the ROI window image to extract the groove edge and forms a raw data distribution of groove width in the data window. The in situ dynamic clustering algorithm dynamically classifies the preprocessed data in situ and finally detects the value of the groove width from the remaining true data. Experimental results show that the equal division thresholding algorithm can effectively reduce the influences of arc light and welding fume on the extraction of the groove edge. The in situ dynamic clustering algorithm can avoid disturbances from simulated welding spatters with diameters less than 2.19 mm, thus realizing the high-precision detection of the actual groove width and demonstrating stronger environmental adaptability of the proposed global pattern recognition approach.


Assuntos
Poluentes Ocupacionais do Ar , Soldagem , Poluentes Ocupacionais do Ar/análise , Algoritmos , Gases/análise , Soldagem/métodos
20.
Int Arch Occup Environ Health ; 95(6): 1255-1265, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35066624

RESUMO

PURPOSE: Air monitoring has been the accepted exposure assessment of toxic metals from, e.g., welding, but a method characterizing the actual dose delivered to the lungs would be preferable. Sampling of particles in exhaled breath can be used for the biomonitoring of both endogenous biomarkers and markers of exposure. We have explored a new method for the sampling of metals in exhaled breath from the small airways in a study on welders. METHODS: Our method for particle sampling, Particles in Exhaled Air (PExA®), is based on particle counting and inertial impaction. We applied it on 19 stainless steel welders before and after a workday. In parallel, air monitoring of chromium, manganese and nickel was performed as well as blood sampling after work. RESULTS: Despite substantial exposure to welding fumes, we were unable to show any significant change in the metal content of exhaled particles after, compared with before, exposure. However, the significance might be obscured by a substantial analytical background noise, due to metal background in the sampling media and possible contamination during sampling, as an increase in the median metal contents were indicated. CONCLUSIONS: If efforts to reduce background and contamination are successful, the PExA® method could be an important tool in the investigations of metals in exhaled breath, as the method collects particles from the small airways in contrast to other methods. In this paper, we discuss the discrepancy between our findings and results from studies, using the exhaled breath condensate (EBC) methodology.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Poluentes Ocupacionais do Ar/análise , Biomarcadores/análise , Expiração , Humanos , Ferreiros , Metais/análise , Exposição Ocupacional/análise , Soldagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...